Credit Hours - 2
The goal of this course is to help students expand their vocabulary. It looks at the structure of English words with classical roots. It examines some of the common roots and the morphological rules that determine the combination of such roots, and rules of meaning change. Students are also introduced to the history of the English language.
Credit Hours - 3
The main purpose of this course is to make students aware of how the study of language can be done in a rigorous scientific manner and the application of linguistic knowledge to different aspects of human endeavors such as language learning and teaching, human communication, and many more. Some of the topics to be discussed are, the nature of language, the origins of human language, the sounds of language (phonetics) the structure of words (morphology), the structure of sentences (syntax), the study of meaning (semantics), language and the brain and others.
Credit Hours - 3
Carbohydrates Metabolism: Digestion of carbohydrates, glycolysis and fate of pyruvate in different organisms; tricarboxylic acid (TCA) cycle; pentose phosphate pathway and fate of reduced coenzymes; catabolism of monosaccharides other than glucose; gluconeogenesis, Calvin Benson cycle, Cori cycle, glyoxylate cycle; glycogenesis and glycogenolysis; regulation of carbohydrate metabolism; Diseases of carbohydrate metabolism. Aerobic metabolism of pyruvate, starvation and obesity. The coenzyme role of B vitamins. Changes in nutritional requirement and metabolic rate in injury and disease. Lipids Metabolism: Digestion of triacylglycerols; the different lipases (lipoprotein lipase, hormone-sensitive lipase); fate of glycerol; beta-oxidation of fatty acids; fate of products (acetyl and propionyl CoA, ketone bodies, reduced coenzymes); synthesis of fatty acids triacylglycerol, cholesterol; regulation of metabolism. Protein Metabolism: Digestion of proteins, transamination, deamination and decarboxylation of amino acids and the fate of ammonia (urea cycle) and carbon skeleton; metabolism of specific amino acids (aromatic and sulphur-containing amino acids); synthesis of amino acids; in-born errors of amino acid metabolism; regulation of metabolism. Enzymes as biological catalyst: Enzyme kinetics and concept of rate-determining step. Enzyme specificity and allosteric regulation. Mechanisms of enzyme action and examples. Coenzymes and vitamins. Drugs and their effect on enzymes.
Credit Hours - 3
Carbohydrates Metabolism: Digestion of carbohydrates, glycolysis and fate of pyruvate in different organisms; tricarboxylic acid (TCA) cycle; pentose phosphate pathway and fate of reduced coenzymes; catabolism of monosaccharides other than glucose; gluconeogenesis, Calvin Benson cycle, Cori cycle, glyoxylate cycle; glycogenesis and glycogenolysis; regulation of carbohydrate metabolism; Diseases of carbohydrate metabolism. Aerobic metabolism of pyruvate, starvation and obesity. The coenzyme role of B vitamins. Changes in nutritional requirement and metabolic rate in injury and disease. Lipids Metabolism: Digestion of triacylglycerols; the different lipases (lipoprotein lipase, hormone-sensitive lipase); fate of glycerol; beta-oxidation of fatty acids; fate of products (acetyl and propionyl CoA, ketone bodies, reduced coenzymes); synthesis of fatty acids triacylglycerol, cholesterol; regulation of metabolism. Protein Metabolism: Digestion of proteins, transamination, deamination and decarboxylation of amino acids and the fate of ammonia (urea cycle) and carbon skeleton; metabolism of specific amino acids (aromatic and sulphur-containing amino acids); synthesis of amino acids; in-born errors of amino acid metabolism; regulation of metabolism. Enzymes as biological catalyst: Enzyme kinetics and concept of rate-determining step. Enzyme specificity and allosteric regulation. Mechanisms of enzyme action and examples. Coenzymes and vitamins. Drugs and their effect on enzymes.