Graduate Courses

Career Prospects

Apart from opening the door to further studies in almost every other area of academic pursuit, a good bachelor’s degree in physics puts you in a good position for employment in research agencies, in traditional engineering fields and newer fields such as software engineering; in education, agriculture, the banking and service industry, security agencies such as the army, navy, airforce, and police service. You may also be able to take up a career in the media, among others.

For those intending further pursuit of knowledge in physics and related areas, the options available span the range from mathematics and applied mathematics to astrophysics, geophysics, condensed matter physics, meteorology and atmospheric physics, energy studies, optics and laser physics, nuclear physics and engineering, computer science and artificial intelligence research and deployment, nanoscience and applications, and many more.

 

Course Code Title
PHYS 610 Seminar I

Credit Hours - 3

In year 1, each student in a Department or Programme is expected to attend all seminars specified and make his/her own presentation on selected topicsto an audience. Each student will be expected to make at least one oral presentation to be assessedeach semester and also present a full write-up of the presentation for another assessment. These will earn a total of 3 credits.

PHYS 611 Classical Mechanics

Credit Hours - 4

Survey of elementary principles including principles of particle and rigid body dynamics, constraints.  Lagrange’s equation.  Hamiltonian mechanics.  Transformation theories of mechanics including Hamilton-Jacobi and Poisson bracket formulation. Lagrangian formulation of continuous media.

PHYS 612 Statistical Mechanics

Credit Hours - 4

The interpretation of classical equilibrium thermodynamics using statistical mechanics; Equilibrium in statistical mechanics. General formulation of statistical thermodynamics. Boltzmann distribution, the perfect classicalgas. The partitionfunction, the perfectquantal gas; negative temperatures. Heat capacity of an insulating solid, phonons. Black body radiation. The canonical distribution. Fermi-Dirac and Bose-Einstein distribution functions and their applications. The ideal Fermion gas, free electron theory of metals; white dwarf and neutron stars. The ideal boson gas, Bose-Einstein condensation

PHYS 613 Quantum Mechanics

Credit Hours - 4

The Dirac description of quantum mechanical state. Approximation methodsfor stationary states Equations of motion and classical correspondence. Time-dependent perturbation theory and application to atomic radiation. Scattering theory.

PHYS 614 Electrodynamics

Credit Hours - 4

Review of Basic Electromagnetism and Maxwell’s equations. Plane EM waves and propagation in a medium. Dispersion relations between Absorption and Diffraction. Kramers-Kronig Relations. Radiating systems and Scattering.

 

Special relativity: Covariance of Maxwell’s equationsunder the Transformations of Special Relativity, relativistic transformations of potentials, applications of the transformations, the Lienard-Wiechert potentials. Covariant (Lagrangian and Hamiltonian) description of charged particles and EM fields.

 

Electromagnetic EnergyRadiation by accelerated charges; Cerenkov Radiation.

PHYS 620 Seminar II

Credit Hours - 3

For year 2, each studentwill make a presentation soon after the Year I examinations on his/ her Thesis Research Proposal and also present a progress report midway into the second semester. These will be assessed for 3 credits.

PHYS 622 Principles of Nuclear Physics

Credit Hours - 4

Introduction to Nuclear Physics. Static Nuclear Properties; mass, moments, charge distribution. Electron Scattering. m-Mesic x-rays. Nuclear forces, the deuteron, nucleon- nucleon scattering. Nuclear models. Nuclear reactions

PHYS 634 X-RAY FLUORESCENCE ANALYSIS (XRFA)

Credit Hours - 4

Interaction of radiation with matter; Interaction of charged particles with matter Cross-section. Radiation and charged particle detectors, basic linear electronic systems. Quantitative XRFA. Practical analysis.

PHYS 641 REACTOR PHYSICS

Credit Hours - 4

Basic principles of the reactor. Diffusion and slowing-down theory. Excitation cross- section. Diffusion equation for thermal neutrons. Slowing-down of neutron as a single process, slowing-down of fission neutrons, diffusion of neutrons in the slowing-down region. Transport mean free path; the four factor formula for homogeneous reactor. Diffusion equation; critical size of homogeneous reactor. Inhomogeneity of reactor core. Heterogeneous reactor.

Two-group reactor theory; Types of reactors.

PHYS 642 RADIATION BIO-PHYSICS

Credit Hours - 4

The Biophysicist’s view of the cell: energetics and statistical relationships in the cell, intra and inter-molecular forces, physics of cellular processes. Absorption spectroscopy and molecular structure, action spectra and quantum yields. Interaction of electromagnetic and particulate radiation with biological systems: radiation counting and dosimetry, radiation damage and repair, survival curves and models, effect of radiation on cells, molecules, tissues and organs.

PHYS 644 MASS SPECTROMETRY

Credit Hours - 4

Development and general theory. Types of mass spectrometers; Applications of mass spectrometers. Advances in mass spectrometry.

PHYS 700 Thesis

Credit Hours - 45

Details of Experiential Learning

The second year activities aim at guiding students to acquire specific laboratory, analytical, theoretical and computational expertise of relevanceto contemporary research in physics. Students will participate in on-going research programmes in the Department. Projects include the following.

 

A: Imaging through scattering media (PI: Amos Kuditcher)

This is an ongoing project in the Department that is developing techniques for extending imaging depth in scattering media while maintaining high transverse resolution. The ultimate goal of the project is to achieve high resolution imaging of biological structures. The project uses interferometric and ultrafast techniques for acquiring data. Students attached to this projectwill learn opticalalignment techniques as well as data acquisition with point and array detectors. They will perform analysis image data collected using interferometers. This project is also pursuing applications of short-wave infrared and terahertzradiation to imaging.Students will participate in setting up the imagingsystem.

 

B: Fabrication and characterization of nano-particles

This is an on-going multi-faceted project, involving several senior members of the Department, which is aimed at developing functional materials for applications in photovoltaics, optoelectronics, and sensing. This project has fabricated several nano- particle and thin film compound semiconductor materials, including zinc oxide, copper oxide, cuprous sulphide, and iron disulphide. Students attached to this project will learn the techniques that have been developed in the project for nano-particle and thin film fabrication, including chemical bath, physical vapour, and chemical vapour deposition. They will also learn to use x-ray diffraction techniques (small and wide angle diffraction), electron microscopy, and optical and infrared spectroscopy to acquire data on existing samples as well as new samples generated by the project. They will use the data to determine physical properties such as band gap of the materials.

 

C: Electronic structure calculations of materials (PI: George Nkrumah-Buandoh) This is an ongoing project that applies theoretical and computational methods for predicting properties of materials. The project uses state-of-the art codes such as Quantum Espresso to generate electronic structure data which are then analysed to determine electronic, optical, and mechanical properties of materials. Students attached to this project will be involved in hands-on computational training in density functional theory, pseudopotentials, plane waves and iterative diagonalization methods. They will use Quantum Espresso to generate electronic structure data, particularly for the materials that are of interest to the experimental research activities in the Department, such as zinc oxide and copper oxide. They will use the data to determine band gap and absorption spectra of such materials and compare their results to experimental results that have been obtained in the Department.

 

D: Anaerobic digester(PI: Michael Addae-Kagyah)

This is an on-going project to develop biogas digesters. The project is currently in the design phase. By the time students join the project, design would have been completed.Therefore, students will participate in construction and characterization of the anaerobic biogas digesters. They will learn about active feedback-control systems and construct prototype control systems. They will also participate in gas production measurements. They will use data from the measurements to optimize the designs.

PHYS 715 Optical Waves in Crystals

Credit Hours - 3

This course aims at a description of the propagation of optical waves in solids and examines the linear and nonlinear electromagnetic wave phenomena that occur in solids. Topics include electromagnetic wave propagation in anisotropic and periodic media, Gaussian beam optics and the ABCD law, electro-optic effects and devices,acousto-optic effects and devices, and introduction to nonlinear optics.

PHYS 716 Nuclear Physics

Credit Hours - 3

This course provides a clear, concise, and up-to-date overview of the atomic nucleus and the theories that seek to explain it. Topics includetwo- and three-nucleon problems, basic nuclear properties, collective and single-particle motion, giant resonances, mean field models, the interacting boson model, nuclei far from stability, nuclear astrophysics, big- bang and stellar nucleosynthesis, electron scattering—nucleon momentum distributions, scaling, polarization observables, parity-violating electron scattering, neutrino physics, current results in relativistic heavy ion physics and hadronic physics, frontiers and future facilities.

PHYS 728 Special Topics in Energy Systems

Credit Hours - 3

The aim of this course is to introduce the student to elements of current energy research. It discusses the theoretical underpinnings of several energy systems. Topics include characteristics of solid, liquid and gaseous fuels; combustion reaction kinetics; combustion technology; flames; heat generation systems: gas-fired furnaces, premixed- charged engines, oil-fired furnaces, gas-turbines, fixed-bed combustors, pulverised fuel combustors, fluidised bed combustors; heat exchangers; thermodynamics and energy efficiency analysis; power cycles; conventional and clean coal technologies; biomass energy; solar thermal power; wind power; geothermal power; nuclear power; environmental impact; carbon capture and sequestration.

PHYS 760 Seminar IV

Credit Hours - 3

The seminar series aim at exposing students to contemporary research in physics while giving them an avenue to present their research. Seminars are given by faculty and invited experts at which contemporary research in physics are discussed. In this course, students give at least one seminar each semester and present their research results.

PHYS621 SOLID STATE PHYSICS

Credit Hours - 4

Periodic structures; latticewaves; electron states and energy band calculations; interatomic forces and static properties of solids; electron-electron and electron-phonon interactions; dynamics of electrons.Transport properties; optical properties; the fermi surface. Cooperative phenomena: magnetism; superconductivity.

PHYS713 Atomic Physics

Credit Hours - 3

The atomic physics course examines the physical foundations of modern experiments in atomic, molecular and optical physics. Topics include the theory of atomic structure, emission and absorption of radiation, fine and hyperfine structure, angular momentum coupling schemes, molecular structure and intermolecular forces, atomic and molecular collisions and modern applications.

 

PHYS 631         INSTRUMENTATION & PHYSICAL MEASUREMENTS

Credit Hours - 4

Analysis and design principles of electronic system for measurement.

Review of basic devices.Transducers. Laboratory techniques and instrument characteristics. Instrument resolution. Scintillators and semiconductor detectors

High speed counting and recording. Electrical measurement of non-electrical quantities.

PHYS 632      PHYSICS OF SURFACES

Credit Hours - 4

Surface structure and chemical composition; electronic contact potential and work function; surface states; band bending, plamons etc. Surface lattice dynamics, surface diffusion and surface melting. Adsorption of atoms and molecules; chemisorption and epitaxial processes; adhesion, friction, lubrication and wear of surfaces. Bulk methods used in studying surface properties.

 

PHYS 633   SEMICONDUCTOR MATERIALS & DEVICES

Credit Hours - 4

Characteristics of elemental and compound semiconductor materials. Amorphous and magnetic semiconductors. Fabrication of semiconductor materials and devices. p-n junction, diode. Transistor. Statistics of recombination and trapping. Applications of tunneling heterojunctions and Schottky barriers. Impurity and impurity band conduction. Hot electron effects.

Avalanche and avalanche transit time oscillators. Optical properties. Lasers and photodetection.

PHYS 635     METEOROLOGY

Credit Hours - 4

Physics of the atmosphere; Heat transfer; Condensation & precipitation. Winds; Synoptic meteorology; Boundary layer meteorology (micrometeorology. Instruments and Observation analysis; Remote sensing methods; Weather forecasting.

PHYS 638        ENERGY

Credit Hours - 4

Review of Energy resources – conventional and non-conventional, renewable and non- renewable. Basis for solar energy consideration. Elements of astronomy, solar spectrum. Instruments and measurements of terrestrial insolation. Thermal conversion – low, medium, and high temperatures. Photovoltaic conversion: Physics of solar cells; Photovoltaic Engineering. PV modules.Systems application. Economicsof solar energy.Environmental Impact.

PHYS 639  DEFECTS IN CRYSTALLINE MATERIALS

Credit Hours - 4

Vacancies, interstitials, impurityatoms. Energies of formation, equilibrium concentrations. Interactions between point defects, energies of migration, theory of diffusion. Quenching, irradiation damage, cold work, non stochiometry.

Shear processes; slip in crystals, Burger’s vector, screwand edge dislocations. Simple theory of dislocations; grain boundaries; plastic deformation.


 

PHYS 643  ISOTOPE GEOCHRONOLOGY

Credit Hours - 4

Radioactive decay; types of radioactive clocks. Fundamental requirements of radioactive dating. Useful radioactive schemes.Analytical techniques and errors. Typicalisotope dating methods. Interpretation of radiometric dates.     

PHYS 710 Seminar I

Credit Hours - 3

The seminar series aim at exposing students to contemporary research in physics while giving them an avenue to present their research. Seminars are given by faculty and invited experts at which contemporary research in physics are discussed. In this course, students give at least one seminar each semester and present their thesis researchproposal.

 

PHYS 711 Advanced Quantum Mechanics

Credit Hours - 3

This course examines the quantum theory of radiation, the Dirac theory of spin-½ particles, and quantum electrodynamics and treats secondquantization of severalfields, including the electromagnetic field. Topics include the Dirac equation, canonical quantization, interacting field theories, Feynman diagrams, applications to atomic transitions, quantumelectrodynamics and introduction to radiative corrections.

PHYS 712 Advanced Experimental Physics

Credit Hours - 3

Research programs in the Department are described by faculty members and advanced graduate students. The experimental basis of physics is illustrated through accounts of great experiments of importance to contemporary research. This serves as an introduction to an experimental sequence in which participants solve experiment design, data acquisition and data analysis problems using modern equipment and software.

PHYS 714 Advanced Electrodynamics

Credit Hours - 3

The advanced electrodynamics course examines the behaviour of relativistic charged particles in electromagnetic fields and the emission and scattering of electromagnetic radiation. Topics include waveguides and resonant cavities, special theory of relativity, simple radiating systemsand antennae, multipole fields, dynamics of relativistic particles and electromagnetic fields, radiation by accelerated charges, and scattering of electromagnetic waves.

PHYS 717 Semiconductor Physics

Credit Hours - 3

This course covers the key principles and applications of semiconductor physics and their relevance to current developments in physics. Topics include characterization of semiconductors, electronic structure of ideal crystals, electronic structure of semiconductor crystals with perturbations, electron system in thermodynamic equilibrium, non-equilibrium processes in semiconductors, semiconductor junctions in thermodynamic equilibrium, semiconductor junctions undernon-equilibrium conditions.

 

PHYS 718 Many-body Physics

Credit Hours - 3

This course covers the concepts and physical pictures behind various phenomena that appear in interacting many-body systems. Topics include second quantization, "free" systems—the building block of the quasiparticle concept, phonons and photons, Fermi and Bose fluids, spin systems (𝑥-𝑦) model, interactions, Green functions and Feynman diagrams,finite temperature Green functions, application of finite temperature Feynman diagrams to the electron-phonon problem and to transport theory, functional integral approach, broken symmetry and superconductivity; local moments and heavy electron physics.

PHYS 719 Advanced Topics in Condensed Matter Physics

Credit Hours - 3

This course gives basic concepts and theory of the traditional condensed matter theory and the modern condensed matter theory. Topics include the nature of condensed matter,order and disorder crystals, scattering and correlations, surfaces and crystal growth, classical and quantum waves, the non-interacting electron model, dynamics of non- interacting electrons, dielectric and opticalproperties, electron interactions, superfluidity and superconductivity.

PHYS 720 Seminar II

Credit Hours - 3

The seminar series aim at exposing students to contemporary research in physics while giving them an avenue to present their research. Seminars are given by faculty and invited experts at which contemporary research in physics are discussed. In this course, students give at least one seminar each semester and present a report on their year-long experiential learningactivities.

PHYS 721 Statistical Optics

Credit Hours - 3

The aim of this course is to cover the statistical nature of optical fields via concepts such as spatial and temporal coherence. Topics include coherence properties of optical waves, first-order properties of light and higher-order coherence effects, partial coherence, imaging through randomly inhomogeneous media; photoelectric detection of light.

PHYS 722 Quantum Optics

Credit Hours - 3

This course provides a broad overview of the quantum mechanical nature of light and its interaction with matter. Topicsinclude quantum theoryof radiation, mechanical effects of light, squeezed states of light, interaction between atoms and quantized fields, system- reservoir interactions, resonance fluorescence, and cavity quantumelectrodynamics.

PHYS 723 Nonlinear Optics

Credit Hours - 3

This course gives students a working knowledge of the fundamental concepts and modern applications of nonlinear optics. Topics include nonlinear optical susceptibility, Kramers- Kronig relations, nonlinear optical interactions, quantum theory of nonlinear optical susceptibility, intensity-dependent refractive index, light scattering, electro-optic and photorefractive effects, multiphoton processes.

PHYS 724 Nonlinear Fibre Optics

Credit Hours - 3

The aim of this course is to cover the basic up-to-date overview of the nonlinear phenomena occurring inside optical fibers. Topics include fibre characteristics and nonlinearities, propagation of optical pulse sin optical fibres, dispersion in optical fibres, self-phase modulation and cross-phase modulation in optical fibres, optical solitons, Raman scattering and parametric processes.

PHYS 725 Plasma Physics

Credit Hours - 3

This course serves as an introduction to plasma phenomena and discusses the main elements of their application in current energy research. Topics include plasma phenomena and plasma characterization, Coulomb collisions, relaxation times, transport processes, two-fluid hydrodynamic and MHD descriptions, plasma confinement by magnetic fields, simple equilibrium and stability analysis, wave propagation in a magnetic field, RF plasma heating, kinetic theory, the Vlasov, Boltzmann and Fokker- Planck equations, relationship between fluid and kinetic descriptions, electron and ion acoustic plasma waves, and Landau damping.

PHYS 726 Laser Physics

Credit Hours - 3

This course is concerned with the physics of the laser, particularly the generation, propagation, and applications of laser beams. Topics include optical beams and resonators: Gaussian beams, ABCD matrices, beam perturbation and diffraction, resonators and resonator stability; laser dynamics: rate equations, threshold conditions, laser spiking and mode-locking, injection locking, hole burning, saturation spectroscopy; Laser spectroscopy: dressed states, double resonance techniques, multi-photon processes.

PHYS 729 Special Topics in Atmospheric Physics

Credit Hours - 3

This course provides a review of atmospheric physics and its application to climatology. Topics include fundamentals of atmospheric science, atmospheric physics, radiative transfer processes in the atmosphere, radiative transfer processes in the ocean,modelling of climaticchange; physical climatology.

PHYS 730 Seminar III

Credit Hours - 3

The seminar series aim at exposing students to contemporary research in physics while giving them an avenue to present their research. Seminarsare given by facultyand invited experts at which contemporary research in physics are discussed. In this course, students give at least one seminar each semester and presentprogress reports on their research.

PHYS 731 Quantum Field Theory

Credit Hours - 3

This Course provides a theoretical framework for constructing quantum mechanical models of systems classically represented by an infinite number of degrees of freedom, that is, fields and (in a condensed matter context) many-body systems. Topics include functional integral quantization of field theories, quantization of gauge theories, renormalization, spontaneous symmetry breaking and the Higgs mechanism.

PHYS 732 Special Topics in Meteorology

Credit Hours - 3

Physical: Global climate system, radar meteorology, radiative transfer, cloud physics, satellite remote sensing of planetary atmosphere, physics of the air-sea boundary Layer; Dynamical: Introduction to fluid dynamics, dynamic climatology, large-scale atmospheric circulations, dynamical weather prediction, modelling the climate system, advanced topics in dynamical meteorology, advanced topics in geophysical applications; 

Synoptic: Tropical meteorology, dynamical weather prediction, statistical weather prediction, advanced topics in synoptic meteorology;

Other Topics: Applied time series analysis.

PHYS 733 Topology and Differential Geometry in Physics

Credit Hours - 3

This course introduces the ideas and techniques of differential geometry and topology at a level suitable for postgraduate students and researchers in theoretical and mathematical physics. Topics to be discussed include the following: Topology; Differentiable manifolds; Vector fields; Lie groups; Fibre bundles and connections.

PHYS 734 Group Theory

Credit Hours - 3

The goal of this course is to answer several questions pertaining to the state of a physical system solely on the basis of symmetry considerations. Topics to be discussed include the following: Groups and their representations; Group isomorphism theorems; Group automorphism: cyclic groups, elementary abelian groups, Group actions on sets; Discrete and continuous groups; SU(n) groups; Lie algebras; Lie groups; Applications to atomic, solid state, nuclear, and high energy physics.

PHYS 735 Astrophysics

Credit Hours - 3

This course principally examines the physics of stars and galaxies. Topics include the Sun and stellarradiation, stellar spectra and classification; stellarstructure and evolution, thermonuclear processes, interstellar material, the formation of stars and planets; binary systems, exo-planets; galaxies and active galactic nuclei; single-dish and interferometric radio techniques. The role of radio astronomyis highlighted throughout the course.

PHYS 736 Statistical Field Theory

Credit Hours - 3

This course uses tools such as perturbation theory, exact solutions and renormalization groups to demonstrate the emergence of scale invariance and universality, and the non- equilibrium dynamics of interfaces and directed paths in random media.

Topics to be discussed include phase transitions, lattice models, Landau-Ginsburg theory, mean field theory, universality, scaling, renormalization group and critical exponents.

PHYS 737 Gravitation

Credit Hours - 3

This course examines the modern theory of gravitation and its application in cosmology. Topics include Newtonian cosmology, principles of general relativity, differential geometry, energy and momentum of flat spacetime, curvature of spacetime near rotating and non-rotating centres of attraction, black holes, galactic dynamics, modified Newtonian dynamics, dark matter, and experimental tests.

PHYS 738 Astrophysical Processes

Credit Hours - 3

This course takes a global view of the various processes in the universe that give rise to observable radiation or particles: Compton scattering, bremsstrahlung, synchrotron radiation, Cherenkov radiation, cosmic rays, cosmic plasmas, magnetospheres, solar flares, accretion disks, X-ray sources, primordial nucleosynthesis, cosmic microwave background, dark matter, neutrinos, gravitational waves.

PHYS 740 Advanced Problems in Physics

Credit Hours - 3

The advanced problems in physics course is a problem-solving course that applies principles of physics as in classical mechanics, quantum mechanics, electrodynamics, statistical mechanics to a variety of problems including problems in atomic physics, molecular physics, optical and laser physics, solid-state physics, nuclear physics.

PHYS 742 Cosmology

Credit Hours - 3

This course applies the theoretical principles of cosmology to specific structures in the universe. Topics include: cosmological principle, relativistic cosmology, types of universe, the beginning and evolution of the universe, competing models of the universe, inflationary models, cosmic background radiation, nucleosynthesis, baryosynthesis, large scale structures, and experimental and observational evidence.

PHYS 750 Topics in Contemporary Physics

Credit Hours - 3

The Topics in Contemporary Physics course deals with selected topics from current trends in physics and physics related fields, including medical physics, biophysics, condensed matter, atomic, molecular and optical physics, energy systems, physics of the environment, science of sustainability, mathematical physics, and complex systems. This course can be taken for credit only once.