CPEN 301:Signals and Systems

Main block


History and overview of signals and systems including reasons for studying signals and systems, areas of application, and role of signals and systems in computer engineering. Signals: representation and properties, continuous and discrete time signals, signals in engineering applications. Systems: representation, common system types and classifications, system properties of linearity, causality, BIBO stability, time invariance, memory and invertibility. Difference equation: differential equations, transformation of time domain differential equations to difference equations. Convolution: impulse response, convolution integral, convolution summation, circuit analysis using convolution. Fourier analysis: signal representation by Fourier series, continuous time Fourier series, discrete time Fourier series, discrete Fourier transform, difference between the transformation methods, circuit analysis using Fourier. Fourier transform: continuous time Fourier transform definition, discrete time Fourier transform, transfer functions. Sampling: sampling theorem, Nyquist criteria, sampling of signals, aliasing, up and down sampling, concept of signal quantization and reconstruction of samples. Laplace transform: Laplace transform integral, properties of Laplace, impulse response, step and ramp functions, inverse transform, poles and zeros, circuit analysis using Laplace transform. Filter circuits: passive and active filter circuits, transfer function.