CPEN 206:Linear Circuits

Main block


CPEN 206:           Linear Circuits        

History and overview of linear circuits, reasons for studying linear circuits, areas of applications, relevance of linear circuits to computer engineering. Circuit components – resistance, reactance, inductance, capacitance, active and reactive elements, resistance and impedance. Circuit configurations: series, parallel and hybrid configuration of circuits and applications. Circuit laws: Ohm’s law, Kirchhoff law, dependent and independent sources, voltage and current divider circuits. Network analysis: nodal analysis and mesh analysis methods. Network theorems: source transformation, superposition, Thevenin, Norton, Maximum power transfer. Operational amplifier: symbol and circuit representation, ideal operational amplifier, inverting and non-inverting amplifiers, integrator and differentiator circuits, design of simple amplifiers. First order circuits: inductance, capacitance, derivation of time constants for RC and RL circuits, response of first order circuits under source-free and step input conditions, switching in first order circuits and applications. Second order circuits: characteristic equation of series and parallel RLC circuits, response of RLC circuit under source-free and step input conditions. Circuit frequency response: frequency response of RC and RLC circuits, transfer functions, resonance of RC and RLC circuits and applications. Sinusoidal analysis: phase representation of voltage and current, impedance and admittance, forced response to sinusoidal function,